ResourceFinder
Organizer and Search tool

Engineering Requirements Specification
Submitted by

Suparna Agnihotri

Ashok Kumar Devineni

Shaila Gadge

Salini Panchumarthi

Table of Contents

1. Purpose of the Document

2. Scope of the Document

3. Project Description

3.1. Overview of ResourceFinder
3.2. Customer for ResourceFinder
3.3. Users of ResourceFinder
4. Software Requirements

4.1. Functional Requirements

4.2. Technical Requirements

5. Hardware Requirements

6. Use case Scenarios

7. Formal Use case Specifications

7.1. Use case Diagrams

7.2. Use Case Description

7.3. Sequence Diagrams

8. System Architecture

9. Project Management and Development Methodologies

9.1. Risk Analysis

9.2. Team Organization

10. Design and Implementation Approach

1. Purpose of the document:

This document establishes the guidelines for the ResourceFinder that eases the work of the user in entering, editing, saving and retrieving the physical resources information from the electronic data sources. This document is aimed to provide appropriate information for the developers’ and users of the ResourceFinder, which is submitted on May 25, 2005.
2. Scope of the document:

This document describes the requirements for the ResourceFinder, the design details, the implementation details, and the development methodology followed to implement the specifications.

3. Project description:

3.1. Overview of ResourceFinder:
ResourceFinder is an integrated, organizing tool and, text-based search and retrieval system designed to meet the needs of the AVON Foundation Center at MGH. ResourceFinder's competence extends to data sources that are also located externally on the Internet.

ResourceFinder is a tool to organize the physical resources. It provides electronic references to hard copy resources. The search functionality in ResourceFinder plugs in various data sources on the Internet and local drives on the computer, in addition to plugging in its own references. The user can view the search results from heterogeneous data sources all in one place. ResourceFinder can switch between different data sources created by it. ResourceFinder has an import/merge functionality that can import the data from one data source into another.
3.2. Customer for ResourceFinder:

Mr. Richard H. Moore and Ms. Lesley Wojcik at Avon Breast Cancer Evaluation Center, Massachusetts General Hospital (MGH).

3.3. Users of ResourceFinder:

The users of ResourceFinder include the team at Avon Breast Cancer Evaluation Center, Massachusetts General Hospital (MGH).

4. Software Requirements:

4.1. Functional Requirements:

Creating data source for physical resources:

ResourceFinder uses its front end to create electronic data source for the physical resources. The user enters different levels of details before saving the physical resource information into the data source. The user can calibrate the physical resource information with online data sources such as PubMed, National Library of Medicine’s data sources, Google etc before saving the resource information into the data repository.

1. Add Rooms
2. Add Owners

3. Add Storage types
4. Add Drawers/Shelves
5. Add Hanging Folders

6. Add Manila Folders

7. Calibrate resources information by scanning the keywords using IRIS Pen or by entering the keywords
8. Set calibration range.

9. Check hits before adding the resource into the data repository.
10. Add Resources
Editing the resource information:

The user has an option to edit the resource information after it is being entered into the data source.

Moving the resources to different locations / changing the ownership of the resources:

The user can easily move the resources information from one location to the other within the same ResourceFinder’s data repository.

Importing/merging the information of different ResourceFinder’s data sources:

The user can easily import/merge the information of one data repository into another. ResourceFinder checks the information hierarchically before merging information of one data source into the other. Say if same owner exists in the given room for the two data sources, the resources owned by the user in the two data sources are merged.
Switching between data sources:

The user can easily switch from one data repository to the other which are present on the local drives or shared network drives.

Searching internal and external data sources using ResourceFinder:

ResourceFinder helps the user to search both the internal and external data sources to get the available resources information. The search results are displayed to the user on the ResourceFinder’s front end. ResourceFinder searches the online information by connecting to the external data sources/data sources, in addition to searching the local and shared network drives. The search for resources in the local/shared network drives is provided by using the Google Desktop Search. The search for online information is supported by Google API and Web Services that can access the National Library of Medicine’s data sources/data sources.
Sorting search results using ResourceFinder:

The search results are sorted based on the data source from which the information is extracted. ResourceFinder hooks up different data sources such as PubMed, NLM, Google, local/shared network drives, and ResourceFinder data sources.
Help for ResourceFinder:

ResourceFinder provides various help topics, and walk through to help the user use the application effectively and efficiently.
4.2. Technical/Software Requirements:

1. Windows platform – Windows XP and higher

2. .NET framework 1.1
3. Google Desktop Search

4. IRISPen software

5. Microsoft Access

5. Hardware Requirements:

1. Pentium machines with 1GHz processor and 128MB+ RAM.

2. Minimum 200 MB free space.

3. IRIS pen

6. Use Case Scenarios:

Scenario 1: Ms. Sheryl creates a new room
Dr. Andrews owns a huge collection of research articles and documents. Ms. Sheryl hired as an employee is given the responsibility to organize his huge collection of resources. She decides to create a location in the database for his collection of resources. She decides to index and save the information of his resources into the electronic data sources. She creates different rooms where Dr. Andrews has his collection of resources. She then closes the application, to see if the rooms are shared by other persons.
Scenario 2: Me. Sheryl adds Dr. Andrews as one of the owners to the room

Ms. Sheryl finds that the rooms have multiple owners. She finds the rooms where Dr. Andrews is one of the owners of the rooms. She adds the name of Dr. Andrews to all the rooms where he has ownership.

Scenario 3: Ms. Sheryl adds storage types owned by Dr. Andrews
Ms. Sheryl takes a note of the storage cabinets, book shelves etc that Dr. Andrews owns. She opens the application and adds the storages owned by Dr. Andrews under his ownership.
Scenario 4:

She finds that some of the storages have shelves, some have drawers and some storages have the resources bundled up. She enters the description of the storages into the database using the application.
Scenario 5: Ms. Sheryl identifies finer levels of categorizing the resources
Ms. Sheryl takes detailed notes storages owned by Dr. Andrews. She found that some of the resources in the manila folders, some resources in hanging folders, some resources in manila folders of hanging folders, and some resources are just bundled up in the storages. She plans to create a hierarchical hybrid structure to categorize the data sources before actually arranging them into the various storages.
Scenario 5: Dr. Andrews asks Ms. Sheryl to identify similar online resources before arranging them in the storages present in the various rooms.
She decides to arrange the resources by separating them into separate topics. She gets the suggestions/ideas of Dr. Andrews to define each topic based on some buzz words or keywords. She then decides to find the number of online resources available that are defined with these buzz words. She opens the application, using the buzz words she tries to find the online resources. She then finds the similar online articles/resources. Based on the results obtained from the search, she defines a range for the resources she wants to add under each topic.

Scenario 6: Ms. Sheryl arranges the resources into the storages of the rooms

Ms. Sheryl decides to enter drawers/shelves (if any) to the storages, hanging folders(if any) to the drawers/shelves or to storages, manila folders (if any) to the hanging folders or drawers/shelves or to storages. She then enters the detailed information of the location of the resources. For some of the resources she decides to find if the resource are within the range that she chose for each of the topic. If she finds that the resource doesn’t fall within the range, she will define and enter the appropriate keywords, so that the resource falls within the range that she chose. She also adds some of the resources information into the database without checking the range within which the resources fall into
Scenario 7: Ms. Sheryl edits the description of the resources information
After Ms. Sheryl entered the information, she finds that she wants to rename the names of the storages. She opens the application and then edits/renames the storage name. She finds interesting that she can edit the names of the different items at different levels.
Scenario 8: Ms. Sheryl moves the storage cabinets from one room to the other.

Ms. Sheryl decided to save the space, by moving the cabinet located in one room to the other. She manages to manually move the resources from one room to the other. She then decides to reflect this moving of storages in her database. She opens the application, she is impressed with the way she was able to move the information of one storage into another. She also found interesting to move the resources information easily between the various levels of the database.

Scenario 7: Dr. Keith searches documents to find resource of his interest
Dr. Keith opens the application; he opens the database of resources information. He enters the keywords or buzz words to search if he can find any resource he can refer to. He was amazed to find that the application not only searches the local/network shared drives but also the online resources.
Scenario 8: Dr. Andrews adds more resources to his collection
Dr. Peggy donates resources she owned to Dr. Andrews. Dr. Andrews decides to save even this information into his database. Dr. Peggy maintained her own database of resources. Dr. Peggy gives access to her database to Dr. Andrews. Dr. Andrews opens the application to see the collection of Peggy’s resources. He then uses the import feature to import Dr. Peggy’s resources information into his database.

Use Case Diagrams:
Use case diagrams combined functionalities
[image: image1.emf]
Use case diagram detailed functions

Manage Locations:
[image: image2.emf]

Manage Resources details:

[image: image3.emf]
Search resources:

[image: image4.emf]

Formal Use Case Descriptions:
	Use Case ID:
	1

	Use Case Name:
	To create new ResourceFinder resources database

	Created by:
	Ashok, Salini
	Last Updated by:
	Salini

	Date Created:
	November 30, 2004
	Date Last Updated:
	April 26, 2005

	Description:
	To create a new ResourceFinder resources database

	Priority:
	High

	Actor(s):
	User

	Actor(s) Goals:
	To create a new ResourceFinder resources database.

	Pre-conditions:
	Application should be running

	Scenarios:
	1. Click ‘New’ option to create the new database to store the resources.
2. Select and create the folder in which the resources have to be saved electronically.

3. Click ‘Ok’ to create the new database

	Post-conditions:
	Creates a new database and a sub folder within this newly created folder that stores each of the resource information in the form of text files.

	Exceptions:
	

	Notes:
	

	Use Case ID:
	2

	Use Case Name:
	Switch to different database

	Created by:
	Ashok, Salini
	Last Updated by:
	Salini

	Date Created:
	November 30, 2004
	Date Last Updated:
	April 26, 2005

	Description:
	To switch to a different database when an instance of the application is running on system.

	Priority:
	High

	Actor(s):
	User

	Actor(s) Goals:
	To switch to use a different database.

	Pre-conditions:
	Application should be running

	Scenarios:
	1. Click ‘Open Database’ option to switch/open an existing database.
2. Navigate to and select the folder recognized by the application to open the existing database.

3. Click ‘Ok’ that will open the existing database in the running application.

	Post-conditions:
	The user can perform different actions such as add/modify/delete the resources etc.

	Exceptions:
	

	Notes:
	

	Use Case ID:
	3

	Use Case Name:
	Opening sample database

	Created by:
	Ashok, Salini
	Last Updated by:
	Salini

	Date Created:
	November 30, 2004
	Date Last Updated:
	April 26, 2005

	Description:
	To open a sample database that is being shipped with the application

	Priority:
	High

	Actor(s):
	User

	Actor(s) Goals:
	To open sample database in order to know its features

	Pre-conditions:
	Application should be running

	Scenarios:
	1. Click the ‘Open Database’ option.
2. Navigate to the installation directory, to open the sample database that comes with the application.

3. Click ‘Ok’ to open the sample database.

	Post-conditions:
	The user can play with the sample database to perform different actions, that lets the user know the features of the application.

	Exceptions:
	

	Notes:
	

	Use Case ID:
	4

	Use Case Name:
	Importing/merging the resources from one database into another

	Created by:
	Ashok, Salini
	Last Updated by:
	Salini

	Date Created:
	November 30, 2004
	Date Last Updated:
	April 26, 2005

	Description:
	To import/merge the resources information from one database into another

	Priority:
	High

	Actor(s):
	User

	Actor(s) Goals:
	To import/merge the resources information from one database into another

	Pre-conditions:
	The application is opened that is connected to a database.

	Scenarios:
	1. Click the ‘Import Database’ option.

2. Navigate to the folder from which the database has to be imported.

3. Click ‘Ok’ to import the resources of one database into another.

	Post-conditions:
	The user can perform different actions on the newly formed merged database.

	Exceptions:
	

	Notes:
	

	Use Case ID:
	5

	Use Case Name:
	Creating a new room

	Created by:
	Ashok, Salini
	Last Updated by:
	Salini

	Date Created:
	December 5, 2004
	Date Last Updated:
	April 26, 2005

	Description:
	To add a new room.

	Priority:
	High

	Actor(s):
	User, System

	Actor(s) Goals:
	To add a new room to the database

	Pre-conditions:
	No room exists with the same name in the database

	Scenarios:
	1. User opens the ResourceFinder application

2. User clicks on ‘Add Room’ option

3. User enters the details of the room

4. ResourceFinder creates a new room and prompts the user to enter more rooms using the application. User is given a choice to add more rooms or stop entering the rooms.
5. User either quits the application or carries on with other actions.

	Post-conditions:
	New room is created in the database using ResourceFinder.

	Exceptions:
	

	Notes:
	

Sequence Diagram: (Use case 5)

[image: image5.emf]

	Use Case ID:
	6

	Use Case Name:
	Creating a new owner

	Created by:
	Ashok, Salini
	Last Updated by:
	Salini

	Date Created:
	December 5, 2004
	Date Last Updated:
	April 26, 2005

	Description:
	User adds a new owner to the room.

	Priority:
	High

	Actor(s):
	User, System

	Actor(s) Goals:
	To add a new owner to the selected room

	Pre-conditions:
	No owner exists with the same name in the database

	Scenarios:
	1. User opens the ResourceFinder application
2. User clicks on ‘Add Owner’ option
3. User enters the details of the owner. ResourceFinder creates a new owner and prompts the user to enter more owners using the application. User is given a choice to add more owners or stop entering the owners.
4. User either quits the application or carries on with other actions.

	Post-conditions:
	New owner for a given room is added to the database using ResourceFinder.

	Exceptions:
	

	Notes:
	

Sequence Diagram: (Use case 6)

[image: image6.emf]

	Use Case ID:
	7

	Use Case Name:
	Creating a new storage type to the owner

	Created by:
	Ashok, Salini
	Last Updated by:
	Salini

	Date Created:
	December 5, 2004
	Date Last Updated:
	April 26, 2005

	Description:
	Adding a new storage type to the selected owner

	Priority:
	High

	Actor(s):
	User, System

	Actor(s) Goals:
	To create a new storage type such as book shelf, file cabinet etc.

	Pre-conditions:
	The owner of the storage type should already be defined using the application.

	Scenarios:
	1. User chooses the owner to whom the storage type is to be added.
2. User clicks on create new storage type

3. User enters the details of the storage type. ResourceFinder creates a new storage type and prompts the user to enter more storage types using the application. User is given a choice to add more storage types or stop adding the storage types.

4. User either quits the application or carries on with other actions

	Post-conditions:
	A new storage type is created in the desired room

	Exceptions:
	

	Notes:
	

Sequence Diagram: (Use case 6)

[image: image7.emf]

	Use Case ID:
	8

	Use Case Name:
	Create drawer/shelf to add to storage type

	Created by:
	Ashok, Salini
	Last Updated by:
	Salini

	Date Created:
	November 16, 2004
	Date Last Updated:
	April 26, 2005

	Description:
	To add drawer/shelf to the storage type

	Priority:
	High

	Actor(s):
	User

	Actor(s) Goals:
	To create a new drawer/shelf using ResourceFinder, that will be added to the storage type.

	Pre-conditions:
	The storage type in which the drawer/shelf is should already be defined using the application.

	Scenarios:
	1. User chooses the storage type into which drawer/shelf has to be added.
2. User clicks ‘Add Drawer/Shelf’ option.

3. User enters the details of the drawer/shelf. ResourceFinder creates a new drawer/shelf and prompts the user to add more drawers/shelves in the chosen storage type using the application. User is given a choice to add more drawers/shelves or stop adding drawers/shelves.
4. User either quits the application or carries on with other actions.

	Post-conditions:
	New drawers/shelves for the selected storage type are added to the database using the application.

	Exceptions:
	

	Notes:
	

Sequence Diagram: (Use case 8)
[image: image8.emf]

	Use Case ID:
	9

	Use Case Name:
	Create hanging folders to add to drawer/shelf.

	Created by:
	Ashok, Salini
	Last Updated by:
	Salini

	Date Created:
	November 16, 2004
	Date Last Updated:
	April 26, 2005

	Description:
	To add hanging folders to the drawer/shelf

	Priority:
	High

	Actor(s):
	User

	Actor(s) Goals:
	To create a new hanging folder using ResourceFinder, to add to the selected drawer/shelf.

	Pre-conditions:
	The drawer/shelf to which the hanging folder has to be added should already be defined using the application.

	Scenarios:
	1. User chooses the storage type into which hanging folder is to be added.
2. User clicks ‘Add Hanging folder’ option.
3. User enters the details of the hanging folder. ResourceFinder creates a new hanging folder and prompts the user to add more hanging folders for the chosen drawer/shelf using the application. User is given a choice to add more hanging folders or stop adding hanging folders.
4. User either quits the application or continues on with other actions.

	Post-conditions:
	New hanging folders for the selected drawer are added to the database using the application.

	Exceptions:
	

	Notes:
	

Sequence Diagram: (Use case 9)
[image: image9.emf]

	Use Case ID:
	10

	Use Case Name:
	Create hanging folders to add to storage type.

	Created by:
	Ashok, Salini
	Last Updated by:
	Salini

	Date Created:
	November 16, 2004
	Date Last Updated:
	April 26, 2005

	Description:
	To add hanging folders to the selected storage type.

	Priority:
	High

	Actor(s):
	User

	Actor(s) Goals:
	To create a new hanging folder using ResourceFinder, to add to the selected storage type.

	Pre-conditions:
	The storage type to which the hanging folder has to be added should already be defined using the application.

	Scenarios:
	1. User chooses the storage type into which hanging folder is to be added.

2. User clicks ‘Add Hanging folder’ option.

3. User enters the details of the hanging folder. ResourceFinder creates a new hanging folder and prompts the user to add more hanging folders for the chosen drawer/shelf using the application. User is given a choice to add more hanging folders or stop adding hanging folders.

4. User either quits the application or continues on with other actions.

	Post-conditions:
	New hanging folders for the selected storage type are added to the database using the application.

	Exceptions:
	

	Notes:
	

Sequence Diagram: (Use case 10)
[image: image10.emf]

	Use Case ID:
	11

	Use Case Name:
	Create manila folder to add to hanging folder.

	Created by:
	Ashok, Salini
	Last Updated by:
	Salini

	Date Created:
	November 16, 2004
	Date Last Updated:
	April 26, 2005

	Description:
	To add manila folders to the selected hanging folder.

	Priority:
	High

	Actor(s):
	User

	Actor(s) Goals:
	To create a new manila folder using ResourceFinder, to add to the selected hanging folder.

	Pre-conditions:
	The hanging folder to which the manila folder has to be added should already be defined using the application.

	Scenarios:
	1. User chooses the hanging folder to which manila folder has to be added.

2. User clicks ‘Add Manila Folder’ option.

3. User enters the details of the manila folder. ResourceFinder creates a new manila folder and prompts the user to add more manila folders for the chosen hanging folder using the application. User is given a choice to add more manila folders or stop adding manila folders.

4. User either quits the application or continues on with other actions.

	Post-conditions:
	New manila folders for the selected hanging folder are added to the database using the application.

	Exceptions:
	

	Notes:
	

	Use Case ID:
	12

	Use Case Name:
	Create manila folder to add to drawer/shelf.

	Created by:
	Ashok, Salini
	Last Updated by:
	Salini

	Date Created:
	November 16, 2004
	Date Last Updated:
	April 26, 2005

	Description:
	To add manila folders to the selected drawer/shelf.

	Priority:
	High

	Actor(s):
	User

	Actor(s) Goals:
	To create a new manila folder using ResourceFinder, to add to the selected drawer/shelf.

	Pre-conditions:
	The drawer/shelf to which the manila folder has to be added should already be defined using the application.

	Scenarios:
	1. User chooses the drawer/shelf to which manila folder has to be added.

2. User clicks ‘Add Manila Folder’ option.

3. User enters the details of the manila folder. ResourceFinder creates a new manila folder and prompts the user to add more manila folders for the chosen drawer/shelf using the application. User is given a choice to add more manila folders or stop adding manila folders.

4. User either quits the application or continues on with other actions.

	Post-conditions:
	New manila folders for the selected drawer/shelf are added to the database using the application.

	Exceptions:
	

	Notes:
	

	Use Case ID:
	13

	Use Case Name:
	Create manila folder to add to storage type.

	Created by:
	Ashok, Salini
	Last Updated by:
	Salini

	Date Created:
	November 16, 2004
	Date Last Updated:
	April 26, 2005

	Description:
	To add manila folders to the selected storage type.

	Priority:
	High

	Actor(s):
	User

	Actor(s) Goals:
	To create a new manila folder using ResourceFinder, to add to the selected storage type.

	Pre-conditions:
	The storage type to which the manila folder has to be added should already be defined using the application.

	Scenarios:
	1. User chooses the storage type to which manila folder has to be added.

2. User clicks ‘Add Manila Folder’ option.

3. User enters the details of the manila folder. ResourceFinder creates a new manila folder and prompts the user to add more manila folders for the chosen storage type using the application. User is given a choice to add more manila folders or stop adding manila folders.

4. User either quits the application or continues on with other actions.

	Post-conditions:
	New manila folders for the selected storage type are added to the database using the application.

	Exceptions:
	

	Notes:
	

Sequence Diagram : (Use cases 12-13)

[image: image11.emf]

	Use Case ID:
	14

	Use Case Name:
	Adding resource after calibrating and/or using check hits.

	Created by:
	Ashok, Salini
	Last Updated by:
	Salini

	Date Created:
	November 30, 2004
	Date Last Updated:
	April 26, 2005

	Description:
	To add the resource after calibrating the information of the resources and/or use check hits to see if the resource falls within the range or out of the range.

	Priority:
	Low

	Actor(s):
	User

	Actor(s) Goals:
	Calibrate the information of resource and use check hits to see if the resource falls within the range that was set.

	Pre-conditions:
	The keywords with which the calibration of the resource can be done should be available.

	Scenarios:
	1. Select ‘Add Resource – Check hits’ option to add the resource.
2. Enter the keywords that can be used to calibrate the information.

3. Click ‘calibrate’ to start the calibration.

4. Set range in the calibration screen and close the screen and close the calibration screen.

5. User can click the ‘Check Hits’ to check if the resource falls within the range set by the user.
6. The user can choose to enter more/less keywords to make the hit of the resource fall within the range. The user can go back and forth between the calibration/set range until a desired range is obtained to add the resource into the database.
7. The resource will be added into the database using the application, after the details are entered to describe it.

	Post-conditions:
	The resource added will be found in the application and the database.

	Exceptions:
	

	Notes:
	

Sequence Diagram (Use Case 14)

[image: image12.emf]

	Use Case ID:
	15

	Use Case Name:
	Create resource to add to manila folder.

	Created by:
	Ashok, Salini
	Last Updated by:
	Salini

	Date Created:
	November 16, 2004
	Date Last Updated:
	April 26, 2005

	Description:
	To add resources to the selected manila folder.

	Priority:
	High

	Actor(s):
	User

	Actor(s) Goals:
	To create a new resource using ResourceFinder, to add to the selected manila folder.

	Pre-conditions:
	The manila folder to which the resource has to be added should already be defined using the application.

	Scenarios:
	1. User chooses the manila folder to which resource has to be added.

2. User clicks ‘Add Resource’ option.

3. User enters the details of the resource. ResourceFinder creates a new resource and prompts the user to add more resources for the chosen manila folder using the application. User is given a choice to add more resources or stop adding resources.

4. User either quits the application or continues on with other actions.

	Post-conditions:
	New resources for the selected manila folder are added to the database using the application.

	Exceptions:
	

	Notes:
	

	Use Case ID:
	16

	Use Case Name:
	Create resource to add to hanging folder.

	Created by:
	Ashok, Salini
	Last Updated by:
	Salini

	Date Created:
	November 16, 2004
	Date Last Updated:
	April 26, 2005

	Description:
	To add resources to the selected hanging folder.

	Priority:
	High

	Actor(s):
	User

	Actor(s) Goals:
	To create a new resource using ResourceFinder, to add to the selected hanging folder.

	Pre-conditions:
	The hanging folder to which the resource has to be added should already be defined using the application.

	Scenarios:
	1. User chooses the hanging folder to which resource has to be added.

2. User clicks ‘Add Resource’ option.

3. User enters the details of the resource. ResourceFinder creates a new resource and prompts the user to add more resources for the chosen hanging folder using the application. User is given a choice to add more resources or stop adding resources.

4. User either quits the application or continues on with other actions.

	Post-conditions:
	New resources for the selected hanging folder are added to the database using the application.

	Exceptions:
	

	Notes:
	

	Use Case ID:
	17

	Use Case Name:
	Create resource to add to drawer/shelf.

	Created by:
	Ashok, Salini
	Last Updated by:
	Salini

	Date Created:
	November 16, 2004
	Date Last Updated:
	April 26, 2005

	Description:
	To add resources to the selected drawer/shelf.

	Priority:
	High

	Actor(s):
	User

	Actor(s) Goals:
	To create a new resource using ResourceFinder, to add to the selected drawer/shelf.

	Pre-conditions:
	The drawer/shelf to which the resource has to be added should already be defined using the application.

	Scenarios:
	1. User chooses the drawer/shelf to which resource has to be added.

2. User clicks ‘Add Resource’ option.

3. User enters the details of the resource. ResourceFinder creates a new resource and prompts the user to add more resources for the chosen drawer/shelf using the application. User is given a choice to add more resources or stop adding resources.

4. User either quits the application or continues on with other actions.

	Post-conditions:
	New resources for the selected drawer/shelf are added to the database using the application.

	Exceptions:
	

	Notes:
	

	Use Case ID:
	18

	Use Case Name:
	Create resource to add to storage type.

	Created by:
	Ashok, Salini
	Last Updated by:
	Salini

	Date Created:
	November 16, 2004
	Date Last Updated:
	April 26, 2005

	Description:
	To add resources to the selected storage type.

	Priority:
	High

	Actor(s):
	User

	Actor(s) Goals:
	To create a new resource using ResourceFinder, to add to the selected storage type.

	Pre-conditions:
	The storage type to which the resource has to be added should already be defined using the application.

	Scenarios:
	1. User chooses the storage type to which resource has to be added.

2. User clicks ‘Add Resource’ option.

3. User enters the details of the resource. ResourceFinder creates a new resource and prompts the user to add more resources for the chosen storage type using the application. User is given a choice to add more resources or stop adding resources.

4. User either quits the application or continues on with other actions.

	Post-conditions:
	New resources for the selected storage type are added to the database using the application.

	Exceptions:
	

	Notes:
	

Sequence Diagram (Use cases 15, 16, 17, 18)

[image: image13.emf]

	Use Case ID:
	19

	Use Case Name:
	Editing the name of an item.

	Created by:
	Suparna
	Last Updated by:
	Salini

	Date Created:
	December 5, 2004
	Date Last Updated:
	April 26, 2005

	Description:
	To edit the name of an item in the database using the application.

	Priority:
	High

	Actor(s):
	User

	Actor(s) Goals:
	To edit the name of the selected item in the application, that will be reflected in the database.

	Pre-conditions:
	The item should be available in the opened application. The item can be a room, owner, storage type, drawer/shelf, hanging folder, manila folder, or resource.

	Scenarios:
	1. Choose the item whose name has to be edited.
2. Select the ‘Edit’ option to edit the name of the item.

3. Enter the new name or change the name of the item and hit enter.

	Post-conditions:
	The name of the item is changed in the application and also in the database.

	Exceptions:
	

	Notes:
	

	Use Case ID:
	20

	Use Case Name:
	 Deleting resource from the database

	Created by:
	Suparna
	Last Updated by:
	Salini

	Date Created:
	December 5, 2004
	Date Last Updated:
	April 26, 2005

	Description:
	To delete resource using the opened application, that will delete the resource from the database

	Priority:
	High

	Actor(s):
	User

	Actor(s) Goals:
	To delete a selected resource from the opened application

	Pre-conditions:
	The resource to be deleted should be present in the opened application

	Scenarios:
	1. Choose the resource to be deleted.
2. Select the ‘Delete’ option

3. The resource will be deleted from the application, that will also be deleted from the database.

	Post-conditions:
	The resource cannot be found in the application or the database.

	Exceptions:
	

	Notes:
	

Sequence Diagram (Use case 20)

[image: image14.emf]

	Use Case ID:
	21

	Use Case Name:
	 Deleting the manila folder

	Created by:
	Suparna
	Last Updated by:
	Salini

	Date Created:
	December 5, 2004
	Date Last Updated:
	April 26, 2005

	Description:
	To delete the selected manila folder from the application, that will be reflected in the database.

	Priority:
	High

	Actor(s):
	User

	Actor(s) Goals:
	To delete the selected manila folder from the database using the application.

	Pre-conditions:
	The selected manila folder should be empty, without any resources.

	Scenarios:
	1. Choose the manila folder to delete
2. Select the ‘Delete’ option to delete the manila folder.

3. The manila folder will be deleted from the application and also in the database.

	Post-conditions:
	The manila folder will be deleted from the application and also from the database.

	Exceptions:
	

	Notes:
	

	Use Case ID:
	22

	Use Case Name:
	 To delete the hanging folder.

	Created by:
	Suparna
	Last Updated by:
	Salini

	Date Created:
	December 5, 2004
	Date Last Updated:
	April 26, 2005

	Description:
	To delete the hanging folder from the application, that will be reflected in the database.

	Priority:
	High

	Actor(s):
	User

	Actor(s) Goals:
	To delete the selected hanging folder from the database using the application.

	Pre-conditions:
	The selected hanging folder should not have any manila folders or resources.

	Scenarios:
	1. Choose the hanging folder to delete.
2. Select the ‘Delete’ option to delete the hanging folder.

3. The hanging folder will be deleted from the application and also from the database.

	Post-conditions:
	The selected hanging folder is deleted from the application and database.

	Exceptions:
	

	Notes:
	

	Use Case ID:
	23

	Use Case Name:
	To delete drawer/shelf.

	Created by:
	Suparna
	Last Updated by:
	Salini

	Date Created:
	December 5, 2004
	Date Last Updated:
	April 26, 2005

	Description:
	To delete the selected drawer/shelf from the application, that will be reflected in the database.

	Priority:
	High

	Actor(s):
	User

	Actor(s) Goals:
	To deleted the selected drawer/shelf from the application.

	Pre-conditions:
	The selected drawer/shelf should be free of hanging folders, manila folders and resources, to delete it from the application and the database.

	Scenarios:
	1. Choose the drawer/shelf to delete from the application
2. Select the ‘Delete’ option

3. The drawer/shelf will be deleted from the application and also from the database.

	Post-conditions:
	The drawer will be deleted from the application and also from the database.

	Exceptions:
	

	Notes:
	

	Use Case ID:
	24

	Use Case Name:
	 Delete storage type

	Created by:
	Suparna
	Last Updated by:
	Salini

	Date Created:
	December 5, 2004
	Date Last Updated:
	April 26, 2005

	Description:
	To delete the storage type from the application, that will be reflected in the database.

	Priority:
	High

	Actor(s):
	User

	Actor(s) Goals:
	To delete the storage type from the application

	Pre-conditions:
	The selected storage type should be free of drawers/shelves, hanging folders, manila folders, and resources.

	Scenarios:
	1. Choose the storage type to delete from the application.
2. Select the delete option.

3. The storage type will be deleted from the application and also from the database.

	Post-conditions:
	The selected storage type is deleted from the application.

	Exceptions:
	

	Notes:
	

	Use Case ID:
	25

	Use Case Name:
	 Delete the owner

	Created by:
	Ashok, Salini
	Last Updated by:
	Salini

	Date Created:
	November 16, 2004
	Date Last Updated:
	April 26, 2005

	Description:
	To delete the owner from the application, that will be reflected in the database.

	Priority:
	High

	Actor(s):
	User

	Actor(s) Goals:
	To delete the owner from the application.

	Pre-conditions:
	The selected owner should be free of storage types.

	Scenarios:
	1. Choose the owner to delete.
2. Select the ‘Delete’ option.

3. The owner will be deleted from the application and also from the database.

	Post-conditions:
	The selected owner from the application will be deleted from the database.

	Exceptions:
	

	Notes:
	

	Use Case ID:
	26

	Use Case Name:
	Delete the room.

	Created by:
	Ashok, Salini
	Last Updated by:
	Salini

	Date Created:
	November 30, 2004
	Date Last Updated:
	April 26, 2005

	Description:
	To delete the room from the application, that will also be reflected in the database.

	Priority:
	Low

	Actor(s):
	User

	Actor(s) Goals:
	To delete the room from the application

	Pre-conditions:
	The selected room should be free of owners.

	Scenarios:
	1. Choose the room to delete from the application.
2. Select the ‘Delete’ option.

3. The room will be deleted from the application and also from the database.

	Post-conditions:
	The selected room will be deleted from the application and also from the database.

	Exceptions:
	

	Notes:
	

	Use Case ID:
	27

	Use Case Name:
	Calibrate the information with online/available resources.

	Created by:
	Ashok, Salini
	Last Updated by:
	Salini

	Date Created:
	November 30, 2004
	Date Last Updated:
	April 26, 2005

	Description:
	To calibrate the information with online/available resources.

	Priority:
	Low

	Actor(s):
	User

	Actor(s) Goals:
	To calibrate the information of the resources.

	Pre-conditions:
	Require keywords to do the calibration of information.

	Scenarios:
	1. Select the ‘Calibration’ option in the application.

2. Enter the keywords to calibrate the information.

3. Select the data sources based on which the calibration has to be done.

4. Click ‘Check Hits’ to calibrate the resources.

	Post-conditions:
	After calibration of the information, application returns the count of hits returned by each of the selected databases.

	Exceptions:
	

	Notes:
	

	Use Case ID:
	28

	Use Case Name:
	Setting the hit range.

	Created by:
	Ashok, Salini
	Last Updated by:
	Salini

	Date Created:
	November 30, 2004
	Date Last Updated:
	April 26, 2005

	Description:
	To set the range to check the hits of the resources, before adding the resources to the database using the application.

	Priority:
	Low

	Actor(s):
	User

	Actor(s) Goals:
	To set the range to check hits while entering the resources to the database using the application.

	Pre-conditions:
	The information can be calibrated before setting the minimum/maximum range.

	Scenarios:
	1. The user can get the hit counts returned from the calibration of the information.

2. Based on these hit counts, the user can decide on setting a range, based on which the details of the resource can be checked to see if the hit is within the range or out of the range.

3. Click ‘Set Range’, based on the range the resource details can be chosen to see if the description of the resource lets the user to be within the range of the available/online information.

	Post-conditions:
	The user can use this range to best describe a resource while adding the resource to the database using the application.

	Exceptions:
	

	Notes:
	

	Use Case ID:
	29

	Use Case Name:
	Moving the resources.

	Created by:
	Ashok, Salini
	Last Updated by:
	Salini

	Date Created:
	November 30, 2004
	Date Last Updated:
	April 26, 2005

	Description:
	To move the resources between the manila folders, hanging folders, drawers/shelves and storage types.

	Priority:
	Low

	Actor(s):
	User

	Actor(s) Goals:
	To move the resources between the manila folders, hanging folders, drawers/shelves and storage types.

	Pre-conditions:
	Resource should be available to move it into any of the manila folders, hanging folders, drawers/shelves or storage types in the database.

	Scenarios:
	1. Select the resource to move.

2. The resource can be moved to any of the manila folder, hanging folder, drawer/shelf, or storage type. A resource cannot be moved to the owner and room level.

3. Press the mouse key on the selected resource and drag it to the desired destination, and release the mouse pressed.

4. The resource will be dragged and placed to the desired destination that will be reflected in the database.

	Post-conditions:
	The moved resource will be found at a different destination in the opened application and also in the database.

	Exceptions:
	

	Notes:
	

	Use Case ID:
	30

	Use Case Name:
	Moving the manila folder.

	Created by:
	Ashok, Salini
	Last Updated by:
	Salini

	Date Created:
	November 30, 2004
	Date Last Updated:
	April 26, 2005

	Description:
	To move the manila folder between the hanging folders, drawers/shelves and storage types.

	Priority:
	Low

	Actor(s):
	User

	Actor(s) Goals:
	To move the manila folder between the hanging folders, drawers/shelves and storage types.

	Pre-conditions:
	Manila folder should be available to move it into any of the hanging folder, drawer/shelf or storage type in the database.

	Scenarios:
	1. Select the manila folder to move.

2. The manila folder can be moved to any of the hanging folder, drawer/shelf, or storage type. A manila folder cannot be moved to the owner and room level.

3. Press the mouse key on the selected manila folder and drag it to the desired destination, and release the mouse pressed.

4. The manila folder will be dragged and placed to the desired destination that will be reflected in the database.

	Post-conditions:
	The moved manila folder will be found at a different destination in the opened application and also in the database.

	Exceptions:
	

	Notes:
	

	Use Case ID:
	31

	Use Case Name:
	Moving the hanging folder.

	Created by:
	Ashok, Salini
	Last Updated by:
	Salini

	Date Created:
	November 30, 2004
	Date Last Updated:
	April 26, 2005

	Description:
	To move the hanging folder between the drawers/shelves and storage types.

	Priority:
	Low

	Actor(s):
	User

	Actor(s) Goals:
	To move the hanging folder between the drawers/shelves and storage types.

	Pre-conditions:
	Hanging folder should be available to move it into any of the drawer/shelf or storage type in the database.

	Scenarios:
	1. Select the hanging folder to move.

2. The hanging folder can be moved to any of the drawer/shelf, or storage type. A hanging folder cannot be moved to the owner and room level.

3. Press the mouse key on the selected hanging folder and drag it to the desired destination, and release the mouse pressed.

4. The hanging folder will be dragged and placed to the desired destination that will be reflected in the database.

	Post-conditions:
	The moved hanging folder will be found at a different destination in the opened application and also in the database.

	Exceptions:
	

	Notes:
	

	Use Case ID:
	32

	Use Case Name:
	Moving the drawer/shelf.

	Created by:
	Ashok, Salini
	Last Updated by:
	Salini

	Date Created:
	November 30, 2004
	Date Last Updated:
	April 26, 2005

	Description:
	To move the drawer/shelf between the storage types.

	Priority:
	Low

	Actor(s):
	User

	Actor(s) Goals:
	To move the drawer/shelf between the storage types.

	Pre-conditions:
	Drawer/shelf should be available to move it into any of the storage type in the database.

	Scenarios:
	1. Select the drawer/shelf to move.

2. The drawer/shelf can be moved to any of the storage type. A drawer/shelf cannot be moved to the owner and room level.

3. Press the mouse key on the selected drawer/shelf and drag it to the desired destination, and release the mouse pressed.

4. The drawer/shelf will be dragged and placed into the desired destination that will be reflected in the database.

	Post-conditions:
	The moved drawer/shelf will be found at a different destination in the opened application and also in the database.

	Exceptions:
	

	Notes:
	

	Use Case ID:
	33

	Use Case Name:
	Moving the storage type.

	Created by:
	Ashok, Salini
	Last Updated by:
	Salini

	Date Created:
	November 30, 2004
	Date Last Updated:
	April 26, 2005

	Description:
	To move the storage type between the between the owners.

	Priority:
	Low

	Actor(s):
	User

	Actor(s) Goals:
	To move the storage type between the owners.

	Pre-conditions:
	Storage type should be available to move it into any of the owners in the database.

	Scenarios:
	1. Select the storage type to move.

2. The storage type can be moved to any of the owners. A storage type cannot be moved to the level.

3. Press the mouse key on the selected storage type and drag it to the desired owner, and release the mouse pressed.

4. The storage type will be dragged and placed under the desired owner that will be reflected in the database.

	Post-conditions:
	The moved storage type will be found under a different owner in the opened application and also in the database.

	Exceptions:
	

	Notes:
	

	Use Case ID:
	34

	Use Case Name:
	Moving the owner.

	Created by:
	Ashok, Salini
	Last Updated by:
	Salini

	Date Created:
	November 30, 2004
	Date Last Updated:
	April 26, 2005

	Description:
	To move the owner between the rooms.

	Priority:
	Low

	Actor(s):
	User

	Actor(s) Goals:
	To move the owner between the rooms.

	Pre-conditions:
	Owner should be available to move to any of the rooms in the database using the application.

	Scenarios:
	1. Select the owner to move.

2. The owner can be moved to any of the rooms. An owner can be moved only between rooms.
3. Press the mouse key on the selected owner and drag it to the desired room, and release the mouse pressed.

4. The owner will be dragged and placed under the desired room that will be reflected in the database.

	Post-conditions:
	The moved owner will be found at a different destination in the opened application and also in the database.

	Exceptions:
	

	Notes:
	

	Use Case ID:
	35

	Use Case Name:
	Searching the information

	Created by:
	Ashok, Salini
	Last Updated by:
	Salini

	Date Created:
	November 30, 2004
	Date Last Updated:
	April 26, 2005

	Description:
	To search the various data sources on the Internet (Google, PubMed, NLM etc), local/network shared drives, currently opened database using the application.

	Priority:
	Low

	Actor(s):
	User

	Actor(s) Goals:
	To search the various data sources.

	Pre-conditions:
	Google Desktop Search tool has to be installed.

	Scenarios:
	1. Click the ‘Search’ option.
2. Enter the keywords to search.

3. Select the data sources to search.

4. Enter the maximum number of articles to display.

5. Click ‘search’ to start the search.

	Post-conditions:
	The search results are displayed in a sorted order based on the data source chosen.

	Exceptions:
	

	Notes:
	

	Use Case ID:
	36

	Use Case Name:
	Editing/Updating resource

	Created by:
	Shaila
	Last Updated by:
	

	Date Created:
	May 16, 2005
	Date Last Updated:
	

	Description:
	

	Priority:
	Low

	Actor(s):
	User

	Actor(s) Goals:
	Update Resource information

	Pre-conditions:
	Resource must be available in the list.

	Scenarios:
	1. Click on the resource to be edited.
2. Resource will be opened in the edit mode.

3. Update needed field title, author, url, description.

4. Click on update to make changes in database.

5. Form is closed.

6. To perform another update, follow same routine.

	Post-conditions:
	Resource will be updated with new information

	Exceptions:
	

	Notes:
	

Sequence diagram (Use Case 36)

[image: image15.emf]

8. System architecture:

[image: image16]
9. Project Management and Development Methodologies:

 9.1. Risk Analysis
1. The momentum of the project may be lost during the month of December when ¾ of the team members will be out of country.

- This one didn’t prove to be major halting factor for team. But it certainly had some impact on the timeline of the project.

2. Schedule Slippage: This would turn into a major project failure because of constantly changing project requirement and analysis.

- This was a constant risk factor for us.

3. Incorrectly defined project specifications.
4. Occurrence of unforeseen design/program flaws

Development time increased, as bugs were tracked down, and code was re-written to compensate for a design flaw.

To avoid this , reviews were held on a regular basis, in order to identify potential problems before they become too cumbersome to handle.

5. Insufficient time to use X1’s SDK.
- This one proved true. As team needed to have more time to research and study X1’s proprietary s/w API.

6. To come up with a best search algorithm will need more time investment and understanding, which may result in unfinished project.
· Currently, workaround solution in application uses Google Desktop Search and web services to search local files-folders and web respectively. Application does not have its own search algorithm to do so. This would require more research and more time. We currently implemented a search in application itself i.e. search ReF database.

Outdated Risks
1. As the client does not have exact specification outlined, lack of understanding feasible and correct functional specification of project may not serve the purpose.
2. Failure to prioritize and understand scope of project.

3. As most of team members have to learn new programming language (if chosen) and other skills, there is a possibility of slippage in schedule.

4. Unavailability of hardware and software technical support from Client.

5. Unavailability of systems to test and deploy software.
9.2. Team Organization
1. Pair programming: The team decided to work in pairs so as avoid duplication of work and utilize two brain powers to achieve maximum productivity. One person in the pair worked as driver and other as rider. The roles exchanged on mutual understanding basis and time schedule of each of the member. The role of the driver was to implement the details and rider reviewed it simultaneously offering suggestions to improve the quality of the work.

2. Quality Assurance Leader: One person in the team was chosen to measure the quality of the work. This person assured the quality of work, by testing the application which meets the client’s requirements. He/she kept the developers posted with the reminders so as to deliver the product to the client with the desired functionality. Other team members assisted QA leader to design test cases to test the overall functionality of the application.

3. Unit testing: Each team member involved in coding writes unit tests, so that testing strategy kept up-to-date with the updates made to the code. Every developer was responsible for reporting the bugs and maintaining the bug database to keep track of the fixes made.

4. Architect: One person in the team was responsible for the architecture and design of the project. She needed to layout the project plan and provide various tasks to the team to implement the plan of action.

10. Design and Implementation Approach:

The implementation of the design and functional details is done using eXtreme Programming (XP) approach. This allows the team to accommodate changing requirements and make enhancements to the application. By following the XP approach the underlying design remains in tact by adding/modifying the requirements from time to time to the application to meet the client’s requirements.

Presentation Layer

Process Management

Database Management

ResourceFinder’s front end

Wrapper around X1and ResourceFinder functionality

Data source of information of internal resources

1

